
Version control with git

Florian Fink

CIS LMU

Version control

I “Version control [. . .] is the management of changes to
documents, computer programs, large web sites, and other
collections of information.” (Wikipedia)

I Track changes to files over time.
I Possibility to undo and redo changes.
I Parallel code development.
I Also for writing theses, reports, archiving results from

experiments, . . .
I Today: basic git concepts using the command line.

Git

I Developed in 2005 by Linus Torvalds to be used as the version
control for the Linux kernel.

I Free software under the GNU GPL.
I De facto standard for version control (no more svn, csv or rcs).
I Alternative: Mercurial.
I Distributed version control

I Every Git working directory is a full-fledged repository with its
complete history and full version-tracking capabilities.

I Completely independend of network access or a central server.

I Rapid branching and merging.
I Documentation: https://git-scm.com/book/en/v2

https://git-scm.com/book/en/v2

Initial configuration

Git needs a basic configuration to be operational:
$ git config --global user.name 'Jon Doe'
$ git config --global user.email 'jon_doe@example.com'

You can also configure git by editing its configuration file
~/.gitconfig:
[user]

name = flo
email = flo@cis.lmu.de

[core]
editor = emacsclient -nw

[alias]
adog = log --all --decorate --oneline --graph
dog = log --decorate --oneline --graph

Commits

I Commits are the basic building blocks in git.
I Each commit can be seen as a snapshot of all the files in the

repository.
I Every commit has its own unique ID.

Commit chains

I Every commit (other than the first) has a pointer to its parent.
I The history of a repository is the chain of commits from the

current to the oldest commit.
I The history may contains branches (i.e. different commits with

the same parent).

Git log

To inspect the commit chain of a repository, use git log.
$ cd /path/to/repository
$ git log
commit 63f295ae21fa9bad1ebff4c21bb2d2e81fea9b0f
Author: flo <flo@cis.lmu.de>
Date: Wed Nov 4 12:34:57 2020 +0100

Implement fib function
commit aeb2a45ab1b17181ae72d8445f82bf274afd203e
Author: flo <flo@cis.lmu.de>
Date: Wed Nov 4 12:33:07 2020 +0100

Add license
...

Git log options

For a better overview of the commit history of a repository there is
a plethora of options to the git log command:
$ cd /path/to/repository
$ git log --decorate --oneline --graph
* 409f9f1 (HEAD -> master) Fixed stupid mistake
* 63f295a Implement fib function
* aeb2a45 Add license
* 5bb4b28 Initial commit

Branches

I Branches are pointers to commits.
I Git automatically creates the master branch on initialization.
I HEAD always points to the currently checked out (active)

branch (it’s a pointer to a pointer).

Creating branches

To create a new branch that points to the same branch where HEAD
is pointing to, use git branch:
$ git branch testing

Switching branches

To switch to another branch, use git checkout:
$ git checkout testing

Switching branches

Now we do some changes
$ vim test.rb
$ git commit -a -m 'made some changes' # See later

Switching branches

. . . checkout master again
$ git checkout master

Switching branches

. . . and do some more changes
$ vim test.rb
$ git commit -a -m 'made other changes'

Merging

I If branches diverge they can be merged together into a branch.
I To merge another branch into the currenct one use:

$ git merge iss53 # HEAD points to master

Merging

I The two branches are merged together in a new commit object.
I Git tries to merge files automatically, but sometimes it cannot

resolve the resulting conflicts.
I Conflicts need to be resolved before the merge can be

committed.
I After conflicts have been resolved the merge can be commited.

Important git commands I

command action
git config Configure git
git log Inspect commit history
git branch branchname Create a new branch branchname
git checkout branchname Checkout branch branchname
git merge testing Merge the branch testing into

the current branch
git checkout -b branchname Create and checkout branch

branchname

States

Files in the repository can be in the following states:
I unmodified / committed: data is safely stored in git’s local

database.
I modified: file is changed but not commited yet.
I statged: modified (or new) file is marked to get commited.
I untracked: file is not managed by git.

Areas

I Working directory: single checkout of one version of the
project.

I Staging Area: storing fo files (in the .git directory) that will
go into the next commit.

I .git directory: Contains the object database with the
complete project history and all its meta-data.

Basic workflow

Initalize an empty repository.
$ cd /path/to/repository
$ git init
Create and stage a new README file.
$ vim README
$ git add README
$ git status # check the status of the repo.
Commit the staged file with a commit-message.
$ git commit -m 'Initial commit'
Edit the README and stage the changes to it.
$ vim README
$ git add README
$ git status # check the status of the repo.
Commit the staged file with a commit-message.
$ git commit -m 'Update README'

Important git commands II

command action
git init Initializes a new git repository in

the current directory
git status Check the status of the repository
git add file Add file to the staging area
git commit -m ’msg’ Commit staged files with a

commit message msg
git commit -am ’msg’ Stage all modified files and

commit them with the commit
message msg

Git remote

I Up until now, all git commands ran locally on a machine (no
internet connection needed).

I Git is a distributed versioning system, so it is possible to share
git repositories online.

I One way to share git repositories is to use a hosting service:
I IFI-Gitlab: https://gitlab2.cip.ifi.lmu.de
I Github: https://github.com
I Bitbucket: https://bitbucket.org

I Most hosting services offer git over ssh

https://gitlab2.cip.ifi.lmu.de
https://github.com
https://bitbucket.org

Ssh keys

In order to use ssh, a private and public key pair is needed. If you
do not have one, generate it:
Generate ~/.ssh/id_rsa and ~/.ssh/id_rsa.pub
$ ssh-keygen

The next step is to upload your public key to the hosting service.
Copy the file to the clipboard and copy it into the ssh configuration
form on your hosting platform:
$ cat ~/.ssh/id_rsa.pub | xclip

Gitlab add ssh-key

Remotes

I In git remotes are names for URIs to (bare) repositories (file
paths, URLs, . . .).

I You can add a remote to a repository:
$ git remote add myremote \

git@gitlab2.cip/ifi.lmu.de:user/repo
I You can remove remotes from a repository:

$ git remote rm myremote
I You can list the remotes of a repository:

$ git remote -v
origin git@gitlab2.cisp.ifi.lmu.de:user/repo (fetch)
origin git@gitlab2.cisp.ifi.lmu.de:user/repo (push)

Cloning

I To access a remote repository, you have to clone it.
I You can clone a repository using ssh:

$ git clone git@gitlab2.cip.ifi.lmu.de:user/repo
or using https:
$ git clone https://gitlab2.cip.ifi.lmu.de/user/repo

I The cloned repository is put under a directory in your current
path with the same name as the repository.

I Each cloned repository automatically contains a remote named
origin.

Fetching, pulling and pushing

I Fetch all the information from mynewremote:
$ git fetch mynewremote
* [new branch] master -> mynewremote/master
* [new branch] dev -> mynewremote/dev
The local repository now contains a branch
mynewremote/master that can be merged with local branches.

I git pull: fetch and then merge into the appropriate branch
(all staged changes must be committed before the pull can
happen).

I git push: push your changes to the remote (if the remote has
newer changes, you need to pull the changes first).

I It is possible to specify the remote and the branch name, if the
defaults (e.g. origin or master) are not appropriate:
$ git pull otherremote dev
$ git push otherremote othermaster

Typical workflow
Get the current project state from the remote.
$ git clone ... # First use of the project.
$ git git pull ... # Later
Resolve possible conflicts
$ vim conflict_file.txt
$ git add conflict_file.txt
$ git commit
Make changes by adding and editing files
in the repository.
$ git add ...
$ git status
$ git commit ...
Fetch and merge changes from the remote
(resolve possible conflicts).
$ git pull ...
Push your local changes to the remote.
$ git push ...

Important git commands III

command action
git clone url Clone a repository from url
git remote add rname url Add a new remote rname
git remote rm rname Remove a remote rname
git remote -v List remotes
git fetch rname -v Fetch information from

the remote rname
git pull Fetch and merge changes from

the remote origin
git push Upload local changes to the

remote origin

Git diff

I Detailed overview of changes in a file.
I Differences are shown line-by-line.
I git diff: what have you changed but not yet staged?
I git diff –staged: what changes are you about to commit?
I Example:

$ echo 'My project.' > README
$ git add README
$ git commit -m 'Add README'
$ echo 'More text.' >> README
$ git diff
@@ -1 +1,2 @@
My project.

+More text.

Resolving conflicts

While working with git, there will occur conflicts occasionally. Git
will warn you, if a conflict has occured and you have to resolve the
conflict manually.
$ git merge change # Merge branch change into master.
Auto-merging README
CONFLICT (content): merge conflict in README
Automatic merge failed; fix conflicts and then commit ...
$ cat README
<<<<<<< HEAD
Hello
=======
Hallo
>>>>>>> change
$ vim README
$ git add README
$ git commit # Commit message can be omitted.

Moving files

I Remove a file from the repository (it will be still in the commit
history of the repository):
$ git rm README.txt # No one reads that.
$ git commit -m 'Remove README'

I Remove a file from the tracked files (without removing it from
the working directory):
$ git rm --cached README.md
$ git commit -m 'Remove README'

I Move a file:
$ git mv README.md README
$ git commit -m 'Rename README.md -> README'

Undoing things

I You have already committed (but not pushed), but forgot to
add a file, and/or want to amend the commit message:
$ git commit -m 'Initital commit'
$ git add forgotten_file # Oops
$ git commit --amend

I You want to unstage a file that you just have staged:
$ git add * # Oops
$ git reset HEAD README.md

I Unmodifying a file. You wan to revert back to the version of
the file that was last committed:
$ echo '# end of file' > CONTRIBUTING.md # Oops
$ git checkout CONTRIBUTING.md
CAREFULL: all uncommited modifcations are lost for all
eternity!

Questions?

