
Homework 11:

Web Crawling and POS Tagging

Florian Fink

Symbolische Programmiersprache

Due: Thursday February 02, 2021, 16:00

In this exercise you will:

• process text from the given URL

• �nd homographs within this text

• match sequences of POS-tags in sentences

Exercise 1: Text Processing and Homographs [6 points]

This homework will be graded using unit tests by running: python3 -m unittest -v

hw11_crawling/test_analysis.py

Implement following methods that can process the text from the given URL:

• get_text(html) - creates the list of clean paragraphs (no HTML markup) from the
given html string (use BeautifulSoup) and returns paragraphs as a string. Hint:
join the list of paragraphs by newline.

• get_headline(html) - returns the headline from the given html string.

• get_normalized_tokens(text) - should tokenize the text with NLTK and return
the list of lower case tokens without stopwords (use NLTK to remove stopwords).

Use NLTK to �nd all homographs within the text. We use the following de�nition:
Distinct words that have the same written form are called homographs. In other words,
homographs are words with the same spelling and di�erent POS.

• Implement a function get_pos_dict(tokens) that stores mapping between words
and their possible POS tags. Hint: use defaultdict, a subclass of the built-in
dict class. Setting defaultdict to set makes the defaultdict useful for building
a dictionary of sets.

1

• Implement a function filter_dict_homographs(word_dict_h) that deletes an en-
try from the dictionary, if this entry is not a homograph.

• Implement a function find_homographs(tokens) that returns a dictionary which
holds homographs. Use already implemented methods.

Exercise 2: POS-Tags [10 Points]

This homework will be graded using unit tests by running: python3 -m unittest -v

hw11_crawling/test_pos_match.py

In this exercise, you will write a program to match sequences of POS tags in sentences.
Download the �le hydrogenics_report.txt into the data/ folder of your project. Take a
look at the �le hw11_crawling/pos_match.py. Implement the remaining unimplemented
methods to make it work:

• Sentences.from_file(cls, path) � reads the �le at path, tokenizes the sentences
(use NLTK), pos-tags the sentences and returns a new instance of the Sentences

class. Hint: The constructor of Sentences expects a list of tagged sentences (each
sentence being a list of pos-tagged words). [2 points]

• PosExpr.from_string(cls, expr) � creates an instance of PosExpr from a string
expression. Hint: The constructor of PosExpr expect a list of strings; take a look
a the tests to see how the function is used. [0 points]

• PosExpr.match_expr(expr, pos) � returns True if expr matches pos. An expres-
sion XX matches the pos-tag XX, the expression * matches any pos-tag and an
expression XX* matches the pos-tags XX, XXY, For example NN* should
return True for the tags NN, NNP and NNPS. [2 points]

• PosExpr.matches(sentence) � returns a list of matches in the given sentence (list
of (word,pos)-pairs). A match is a list of (word, pos)-pairs, where the tags in
the sentence matched the expression mask provided by PosExpr for all possible
positions. For example given p=PosPattern.from_string("X Y"),
p.matches([(a,X),(b,Y),(c,Z),(d,X),(e,Y))]) should return the list
[[(a,X),(b,Y)],[(d,X),(e,Y)]]. [4 points]

• find(sentences, expr) � returns a list of strings (not the (word,pos)-pairs) that
match the given expression in all sentences. For example find_string(sentences,
"JJ NN") should return the �at list [...,"prior year",...]. [2 points]

2

