
WordNet

Florian Fink
- Folien von Desislava Zhekova -

January 19, 2021

WordNet

I WordNet is a large lexical database of English
(semantically-oriented)

I Nouns, verbs, adjectives and adverbs are grouped into sets of
synonyms (synsets)

I Basis for grouping the words is their meanings.

Semantic Relations

I Hypernym, Supertype – Color is a hypernym of Red.

I Hyponym, Subtype – Purple is a hyponym of Color.

I Meronym, Part – Finger is a meronym of Hand.

I Holonym, Whole – Face is a holonym of Nose.

I Antonym, Opposites – Long is a antonym of Short.

I Co-Hyponym – Red an Blue are Co-Hyponym (they are both
hyponyms of Color).

I Synonym – Motorcar and automobile are synonyms

WordNet

English WordNet online: http://wordnet.princeton.edu

http://wordnet.princeton.edu

WordNet

http://globalwordnet.org/

http://globalwordnet.org/

WordNet

I NLTK includes the English WordNet (155,287 words and 117,659
synonym sets)

I NLTK graphical WordNet browser: nltk.app.wordnet()

Senses and Synonyms

Consider the sentence in (1). If we replace the word motorcar in (1)
with automobile, to get (2), the meaning of the sentence stays pretty
much the same:

1. Benz is credited with the invention of the motorcar.

2. Benz is credited with the invention of the automobile.

⇒ Motorcar and automobile are synonyms.

Let’s explore these words with the help of WordNet

Senses and Synonyms

I

1 >>> from n l t k . corpus import wordnet as wn
2 >>> wn . synsets (" motorcar ")
3 [Synset (" car . n . 01 ")]

I Motorcar has one meaning car.n.01 (=the first noun sense of
car).

I The entity car.n.01 is called a synset, or "synonym set", a
collection of synonymous words (or "lemmas"):

I

1 >>> wn . synset (" car . n . 01 ") . lemma_names ()
2 [" car " , " auto " , " automobi le " , " machine " , "

motorcar "]

Senses and Synonyms

Synsets are described with a gloss (= definition) and some example
sentences

1 >>> wn . synset (" car . n . 01 ") . d e f i n i t i o n ()
2 " a motor veh i c l e w i th fou r wheels ; usua l l y p rope l led

by an i n t e r n a l combustion engine "
3 >>> wn . synset (" car . n . 01 ") . examples ()
4 [" he needs a car to get to work "]

Senses and Synonyms

Unlike the words automobile and motorcar, which are unambiguous
and have one synset, the word car is ambiguous, having five synsets:

1 >>> wn . synsets (" car ")
2 [Synset (" car . n . 01 ") , Synset (" car . n . 02 ") , Synset (" car .

n . 03 ") , Synset (" car . n . 04 ") , Synset (" cable_car . n .
01 ")]

3 >>> for synset in wn. synsets (" car ") :
4 ... pr in t synset . lemma_names ()
5 ...
6 [" car " , " auto " , " automobi le " , " machine " , " motorcar "]
7 [" car " , " r a i l c a r " , " ra i lway_car " , " r a i l r o a d _ c a r "]
8 [" car " , " gondola "]
9 [" car " , " e leva to r_ca r "]

10 [" cable_car " , " car "]

The WordNet Hierarchy

Hypernyms and hyponyms (“is-a relation”)

I motor vehicle is a hypernym of motorcar

I ambulance is a hyponym of motorcar

The WordNet Hierarchy

1 >>> motorcar = wn . synset (" car . n . 01 ")
2 >>> types_of_motorcar = motorcar . hyponyms ()
3 >>> types_of_motorcar [26]
4 Synset (" ambulance . n . 01 ")
5 >>> sorted ([lemma . name () for synset in types_of_motorcar

for lemma in synset . lemmas ()])
6 [" Model_T " , "S .U.V . " , "SUV" , " Stanley_Steamer " , " ambulance "

, " beach_waggon " , " beach_wagon " , " bus " , " cab " , "
compact " , " compact_car " , " c o n v e r t i b l e " , " coupe " , "
c r u i s e r " , " e l e c t r i c " , " e l ec t r i c_au tom ob i l e " , "
e l e c t r i c _ c a r " , " es ta te_car " , " gas_guzzler " , " hack " , "
hardtop " , " hatchback " , " heap " , " horse less_car r iage " , "
hot−rod " , " hot_rod " , " j a l o p y " , " jeep " , " landrover " , "
l imo " , " l imous ine " , " loaner " , " m in icar " , " minivan " , "
pace_car " , " p a t r o l _ c a r " , " phaeton " , " po l i ce_ca r " , "
p o l i c e _ c r u i s e r " , " prowl_car " , " race_car " , " racer " , "
rac ing_car " ...]

The WordNet Hierarchy

1 >>> motorcar . hypernyms ()
2 [Synset (" motor_vehic le . n . 01 ")]
3 >>> paths = motorcar . hypernym_paths ()
4 >>> len (paths)
5 2
6 >>> [synset . name () for synset in paths [0]]
7 [" e n t i t y . n . 01 " , " p h y s i c a l _ e n t i t y . n . 01 " , " ob jec t . n . 01 "

, " whole . n . 02 " , " a r t i f a c t . n . 01 " , " i n s t r u m e n t a l i t y
. n . 03 " , " con ta ine r . n . 01 " , " wheeled_vehic le . n . 01 " ,

" s e l f−p rope l l ed_veh i c l e . n . 01 " , " motor_vehic le . n .
01 " , " car . n . 01 "]

8 >>> [synset . name () for synset in paths [1]]
9 [" e n t i t y . n . 01 " , " p h y s i c a l _ e n t i t y . n . 01 " , " ob jec t . n . 01 "

, " whole . n . 02 " , " a r t i f a c t . n . 01 " , " i n s t r u m e n t a l i t y
. n . 03 " , " conveyance . n . 03 " , " veh i c l e . n . 01 " , "
wheeled_vehic le . n . 01 " , " s e l f−p rope l l ed_veh i c l e . n .
01 " , " motor_vehic le . n . 01 " , " car . n . 01 "]

More Lexical Relations

Meronyms and holonyms

I branch is a meronym (part meronym) of tree

I heartwood is a meronym (substance meronym) of tree

I forest is a holonym (member holonym) of tree

More Lexical Relations

1 >>> wn . synset (" t r ee . n . 01 ") . part_meronyms ()
2 [Synset (" b u r l . n . 02 ") , Synset (" crown . n . 07 ") , Synset ("

stump . n . 01 ") , Synset (" t runk . n . 01 ") , Synset (" l imb .
n . 02 ")]

3 >>> wn . synset (" t r ee . n . 01 ") . substance_meronyms ()
4 [Synset (" heartwood . n . 01 ") , Synset (" sapwood . n . 01 ")]
5 >>> wn . synset (" t r ee . n . 01 ") . member_holonyms ()
6 [Synset (" f o r e s t . n . 01 ")]

More Lexical Relations

Relationships between verbs:

I the act of walking involves the act of stepping, so walking entails
stepping

I some verbs have multiple entailments

1 >>> wn . synset (" walk . v . 01 ") . en ta i lments ()
2 [Synset (" step . v . 01 ")]
3 >>> wn . synset (" eat . v . 01 ") . en ta i lments ()
4 [Synset (" swallow . v . 01 ") , Synset (" chew . v . 01 ")]
5 >>> wn . synset (" tease . v . 03 ") . en ta i lments ()
6 [Synset (" arouse . v . 07 ") , Synset (" d i sappo in t . v . 01 ")]

More Lexical Relations

Some lexical relationships can express antonymy:

1 >>> wn . lemma(" supply . n . 02 . supply ") . antonyms ()
2 [Lemma("demand . n . 02 . demand")]
3 >>> wn . lemma(" rush . v . 01 . rush ") . antonyms ()
4 [Lemma(" l i n g e r . v . 04 . l i n g e r ")]
5 >>> wn . lemma(" h o r i z o n t a l . a . 01 . h o r i z o n t a l ") . antonyms ()
6 [Lemma(" v e r t i c a l . a . 01 . v e r t i c a l ") , Lemma(" i n c l i n e d . a .

02 . i n c l i n e d ")]
7 >>> wn . lemma(" s taccato . r . 01 . s taccato ") . antonyms ()
8 [Lemma(" lega to . r . 01 . lega to ")]

More Lexical Relations

You can see the lexical relations, and the other methods defined on a
synset, using dir(). For example:

1 import n l t k
2 from n l t k . corpus import wordnet as wn
3
4 pr in t (wn . synsets (" motorcar "))
5
6
7 pr in t (di r (wn . synsets (" motorcar ") [0]))

Semantic Similarity

Two synsets linked to the same root may have several hypernyms in
common. If two synsets share a very specific hypernym (low down in
the hypernym hierarchy), they must be closely related.

1 >>> r i g h t = wn . synset (" r igh t_wha le . n . 01 ")
2 >>> orca = wn . synset (" orca . n . 01 ")
3 >>> minke = wn . synset (" minke_whale . n . 01 ")
4 >>> t o r t o i s e = wn . synset (" t o r t o i s e . n . 01 ")
5 >>> novel = wn . synset (" novel . n . 01 ")
6 >>> r i g h t . lowest_common_hypernyms (minke)
7 [Synset (" baleen_whale . n . 01 ")]
8 >>> r i g h t . lowest_common_hypernyms (orca)
9 [Synset (" whale . n . 02 ")]

10 >>> r i g h t . lowest_common_hypernyms (t o r t o i s e)
11 [Synset (" ve r t eb ra te . n . 01 ")]
12 >>> r i g h t . lowest_common_hypernyms (novel)
13 [Synset (" e n t i t y . n . 01 ")]

Semantic Similarity

We can quantify this concept of generality by looking up the depth of
each synset:

1 >>> wn . synset (" baleen_whale . n . 01 ") . min_depth ()
2 14
3 >>> wn . synset (" whale . n . 02 ") . min_depth ()
4 13
5 >>> wn . synset (" ve r t eb ra te . n . 01 ") . min_depth ()
6 8
7 >>> wn . synset (" e n t i t y . n . 01 ") . min_depth ()
8 0

Semantic Similarity

Similarity measures have been defined over the collection of WordNet
synsets that incorporate this insight

I path_similarity() assigns a score in the range 0-1 based
on the shortest path that connects the concepts in the hypernym
hierarchy

I -1 is returned in those cases where a path cannot be found

I Comparing a synset with itself will return 1

Semantic Similarity

1 >>> r i g h t . p a t h _ s i m i l a r i t y (minke)
2 0 . 25
3 >>> r i g h t . p a t h _ s i m i l a r i t y (orca)
4 0 . 16666666666666666
5 >>> r i g h t . p a t h _ s i m i l a r i t y (t o r t o i s e)
6 0 . 076923076923076927
7 >>> r i g h t . p a t h _ s i m i l a r i t y (novel)
8 0 . 043478260869565216

Similarity between nouns

I ("car", "automobile")

I synsets1("car") = [synset11,synset12,synset13]
nltk.corpus.wordnet.synsets("car")

I synsets2("automobile") = [synset21,synset22,synset23]
nltk.corpus.wordnet.synsets("automobile")

I consider all combinations of synsets formed by the synsets of the
words in the word pair ("car”, "automobile”)
[(synset11,synset21),(synset11,synset22),(synset11,synset23), ...]

I determine score of each combination e.g.:
synset11.path_similarity(synset21)

I determine the maximum score→ indicator of similarity

Semantic Similarity

???
Can you think of an NLP application for which semantic similarity will
be helpful?

Semantic Similarity

???
Can you think of an NLP application for which semantic similarity will
be helpful?

Suggestion
Coreference Resolution:
I saw an orca. This whale was huge.

Polysemy

I The polysemy of a word is the number of senses it has.

I The noun dog has 7 senses in WordNet:

1 from n l t k . corpus import wordnet as wn
2 num_senses= len (wn . synsets (" dog " , " n "))
3
4 pr in t (num_senses)
5 p r i n t s 7

I We can also compute the average polysemy of nouns, verbs,
adjectives and adverbs according to WordNet.

Polysemy of nouns
We can also compute the average polysemy of nouns.

I Fetch all lemmas in WordNet that have a given POS:
nltk.corpus.wordnet.all_lemma_names(POS)

1 from n l t k . corpus import wordnet as wn
2 all_lemmas=set (wn . all_lemma_names (" n "))
3 pr in t (len (al l_lemmas))
4 p r i n t s 117798

I Determine meanings of each lemma:
nltk.corpus.wordnet.synsets(lemma,pos) returns
list of senses to a given lemma and POS, e.g. for "car"

1 from n l t k . corpus import wordnet as wn
2 meanings=wn . synsets (" car " , " n ")
3 pr in t (meanings)

I Sum up the number of meanings of each lemma (restricted to
nouns) and devide this by the total number of lemmas

Lesk Algorithm

I classical algorithm for Word Sense Disambiguation (WSD)
introduced by Michael E. Lesk in 1986

I idea: word’s dictionary definitions are likely to be good indicators
for the senses they define

Lesk Algorithm: Example

Sense Definition
s1: tree a tree of the olive family

s2: burned stuff the solid residue left
when combustible material is burned

Table: Two senses of ash

Lesk Algorithm: Example

Sense Definition
s1: tree a tree of the olive family

s2: burned stuff the solid residue left
when combustible material is burned

Table: Two senses of ash

Score = number of (stemmed) words that are shared by sense
definition and context

Scores Context
s1 s2 This cigar burns slowly and

creates a stiff ash

Table: Disambiguation of ash with Lesk’s algorithm

Interlude: Normalization

Once the text has been segmented into its tokens (paragraphs,
sentences, words), most NLP pipelines do a number of other basic
procedures for text normalization, e.g.:

I lowercasing

I stemming

I lemmatization

I stopword removal

Interlude: Lowercasing

Lowercasing:

1 import n l t k
2
3 s t r i n g = " The boy , s cars are d i f f e r e n t co lo rs . "
4 tokens = n l t k . word_tokenize (s t r i n g)
5 lower = [x . lower () for x in tokens]
6 pr in t (" " . j o i n (lower))
7
8 # p r i n t s
9 # the boy , s cars are d i f f e r e n t co lo rs .

I Often, however, instead of working with all word forms, we would
like to extract and work with their base forms (e.g. lemmas or
stems)

I Thus with stemming and lemmatization we aim to reduce
inflectional (and sometimes derivational) forms to their base
forms.

Interlude: Stemming

Stemming: removing morphological affixes from words, leaving only
the word stem.

1 import n l t k
2
3 s t r i n g = " The boy , s cars are d i f f e r e n t co lo rs . "
4 tokens = n l t k . word_tokenize (s t r i n g)
5 lower = [x . lower () for x in tokens]
6 stemmed = [stem (x) for x in lower]
7 pr in t (" " . j o i n (stemmed))
8
9 def stem (word) :

10 for s u f f i x in [" ing " , " l y " , " ed " , " ious " , " i es " , " i ve " , " es " ,
" s " , " ment "] :

11 i f word . endswith (s u f f i x) :
12 return word [:− len (s u f f i x)]
13 return word
14 # p r i n t s
15 # the boy , s car are d i f f e r e n t co l o r .

Interlude: Stemming

Stemming:

1 import n l t k
2 import re
3
4 s t r i n g = " The boy , s cars are d i f f e r e n t co lo rs . "
5 tokens = n l t k . word_tokenize (s t r i n g)
6 lower = [x . lower () for x in tokens]
7 stemmed = [stem (x) for x in lower]
8 pr in t (" " . j o i n (stemmed))
9

10 def stem (word) :
11 regexp = r " ^ (.∗?) (ing | l y | ed | ious | i es | i ve | es | s | ment) ?$ "
12 stem , s u f f i x = re . f i n d a l l (regexp , word) [0]
13 return stem
14
15 # p r i n t s
16 # the boy , s car are d i f f e r e n t co l o r .

Interlude: Stemming

NLTK’s stemmers:

I Porter Stemmer is the oldest stemming algorithm supported in
NLTK, originally published in 1979.
http:
//www.tartarus.org/~martin/PorterStemmer/

I Lancaster Stemmer is much newer, published in 1990, and is
more aggressive than the Porter stemming algorithm.

I Snowball stemmer currently supports several languages:
Danish, Dutch, English, Finnish, French, German, Hungarian,
Italian, Norwegian, Porter, Portuguese, Romanian, Russian,
Spanish, Swedish.

I Snowball stemmer: slightly faster computation time than porter.

http://www.tartarus.org/~martin/PorterStemmer/
http://www.tartarus.org/~martin/PorterStemmer/

Interlude: Stemming

NLTK’s stemmers:

1 import n l t k
2
3 s t r i n g = " The boy , s cars are d i f f e r e n t co lo rs . "
4 tokens = n l t k . word_tokenize (s t r i n g)
5 lower = [x . lower () for x in tokens]
6
7 p o r t e r = n l t k . PorterStemmer ()
8 stemmed = [p o r t e r . stem (t) for t in lower]
9 pr in t (" " . j o i n (stemmed))

10 # p r i n t s
11 # the boy , s car are d i f f e r co l o r .
12
13 lancas te r = n l t k . LancasterStemmer ()
14 stemmed = [l ancas te r . stem (t) for t in lower]
15 pr in t (" " . j o i n (stemmed))
16 # p r i n t s
17 # the boy , s car ar d i f f co l .

Interlude: Stemming

NLTK’s stemmers:

1 import n l t k
2
3 s t r i n g = " The boy , s cars are d i f f e r e n t co lo rs . "
4 tokens = n l t k . word_tokenize (s t r i n g)
5 lower = [x . lower () for x in tokens]
6
7 snowbal l = n l t k . SnowballStemmer (" eng l i sh ")
8 stemmed = [snowbal l . stem (t) for t in lower]
9 pr in t (" " . j o i n (stemmed))

10 # p r i n t s
11 # the boy , s car are d i f f e r co l o r .

Interlude: Lemmatization

I stemming can often create non-existent words, whereas lemmas
are actual words

I NLTK WordNet Lemmatizer uses the WordNet Database to
lookup lemmas

1 import n l t k
2 s t r i n g = " The boy , s cars are d i f f e r e n t co lo rs . "
3 tokens = n l t k . word_tokenize (s t r i n g)
4 lower = [x . lower () for x in tokens]
5 p o r t e r = n l t k . PorterStemmer ()
6 stemmed = [p o r t e r . stem (t) for t in lower]
7 pr in t (" " . j o i n (lemmatized))
8 # p r i n t s the boy , s car are d i f f e r co l o r .
9 wnl = n l t k . WordNetLemmatizer ()

10 lemmatized = [wnl . lemmatize (t) for t in lower]
11 pr in t (" " . j o i n (lemmatized))
12 # p r i n t s the boy
13 , s car are d i f f e r e n t co l o r .

Interlude: Stopword removal:

Stopword removal:

1 import n l t k
2
3 s t r i n g = " The boy , s cars are d i f f e r e n t co lo rs . "
4 tokens = n l t k . word_tokenize (s t r i n g)
5 lower = [x . lower () for x in tokens]
6 wnl = n l t k . WordNetLemmatizer ()
7 lemmatized = [wnl . lemmatize (t) for t in lower]
8
9 content = [x for x in lemmatized i f x not in n l t k .

corpus . stopwords . words (" eng l i sh ")]
10 pr in t (" " . j o i n (content))
11 # p r i n t s
12 # boy , s car d i f f e r e n t co l o r .

Lesk Algorithm: Example

Sense Definition
s1: tree a tree of the olive family

s2: burned stuff the solid residue left
when combustible material is burned

Table: Two senses of ash

Score = number of (stemmed) words that are shared by sense
definition and context

Scores Context
s1 s2 This cigar burns slowly and

creates a stiff ash

Table: Disambiguation of ash with Lesk’s algorithm

Lesk Algorithm: Example

Sense Definition
s1: tree a tree of the olive family

s2: burned stuff the solid residue left
when combustible material is burned

Table: Two senses of ash

Score = number of (stemmed) words that are shared by sense
definition and context

Scores Context
s1 s2 This cigar burns slowly and
0 1 creates a stiff ash

Table: Disambiguation of ash with Lesk’s algorithm

Lesk Algorithm: Example

Sense Definition
s1: tree a tree of the olive family

s2: burned stuff the solid residue left
when combustible material is burned

Table: Two senses of ash

Score = number of (stemmed) words that are shared by sense
definition and context

Scores Context
s1 s2 The ash is one of the last trees
??? to come into leaf

Table: Disambiguation of ash with Lesk’s algorithm

Lesk Algorithm: Example

Sense Definition
s1: tree a tree of the olive family

s2: burned stuff the solid residue left
when combustible material is burned

Table: Two senses of ash

Score = number of (stemmed) words that are shared by sense
definition and context

Scores Context
s1 s2 The ash is one of the last trees
1 0 to come into leaf

Table: Disambiguation of ash with Lesk’s algorithm

Lesk Algorithm

1 >>> from n l t k . wsd import l esk
2 >>> sent = [" I " , " went " , " to " , " the " , " bank " , " to " , "

depos i t " , "money" , " . "]
3
4 >>> pr in t (lesk (sent , " bank " , " n "))
5 Synset (" savings_bank . n . 02 ")

Lesk Algorithm

The definitions for "bank" are:
1 >>> from n l t k . corpus import wsordnet as wn

2 >>> for ss in wn. synsets (" bank ") :

3 ... pr in t (ss , ss . d e f i n i t i o n ())

4 ...

5 Synset (" bank . n . 01 ") s lop ing land (e s p e c i a l l y the slope beside a body of water)

6 ...

Lesk Algorithm

Check implementation via
http://www.nltk.org/_modules/nltk/wsd.html

1 def lesk (context_sentence , ambiguous_word , pos=None ,
synsets=None) :

2 con tex t = set (context_sentence)
3 i f synsets is None :
4 synsets = wordnet . synsets (ambiguous_word)
5 i f pos :
6 synsets = [ss for ss in synsets i f s t r (ss . pos ()) ==

pos]
7 i f not synsets :
8 return None
9

10 _ , sense = max(
11 (len (con tex t . i n t e r s e c t i o n (ss . d e f i n i t i o n () . s p l i t ()))

, ss) for ss in synsets
12)
13 return sense

http://www.nltk.org/_modules/nltk/wsd.html

Lesk Algorithm

I Information derived from a dictionary is insufficient for high quality
Word Sense Disambiguation (WSD).

I Lesk reports accuracies between 50% and 70%.

I Optimizations: to expand each word in the context with a list of
synonyms

Task

TASK TO SOLVE

In the Wikipedia article on Ada Lovelace,
I how many words refer to a relative? (excluding

names)
I how many words refer to an illness?
I how many words refer to a science?

In each case: which words?

Let’s solve this using WordNet...

Task

TASK TO SOLVE

In the Wikipedia article on Ada Lovelace,
I how many words refer to a relative? (excluding

names)
I how many words refer to an illness?
I how many words refer to a science?

In each case: which words?

Let’s solve this using WordNet...

Step 1: Read in file

Read ada_lovelace.txt as one text string.

1 >>> pr in t t e x t
2 " Augusta Ada King , Countess o f Lovelace (10 December 1815
3 27 November 1852) , born Augusta Ada Byron and
4 now commonly known as Ada Lovelace , was an
5 Engl ish mathematician and w r i t e r c h i e f l y known
6 f o r her work on Charles Babbages ea r l y mechanica
7 general−purpose computer , the A n a l y t i c a l Engine "

Step 2: Sentence Splitting

Split the text into sentences:

1 >>> sentences = n l t k . sent_ token ize (t e x t)
2 [" Augusta Ada King , Countess o f Lovelace ... "] ,
3 [" Her notes on the engine ... "] ,
4 [" Because of t h i s , she i s o f ten ... "] ,

Step 3: Tokenize

Split the sentences in to tokens.

1 >>> pr in t tokens
2 [[" Augusta " , "Ada" , " King " , " , " , " Countess " , ...] ,
3 [" Her " , " notes " , " on " , " the " , " engine " , ...] ,
4 [" Because " , " o f " , " t h i s " , " , " , " she " , " i s " , ...]
5 ...]

Step 4: Part-of-Speech tagging

Find the POS-tag of each token using NLTK’s recommended POS
tagger nltk.pos_tag.

1 >>> pr in t tags
2 [[(" Augusta " , "NNP") , ("Ada" , "NNP") , ...] ,
3 [(" Her " , "PRP$") , (" notes " , "NNS") , (" on " , " IN ") , ...] ,
4 ...]

POS-tags

NLTK provides documentation for each tag, which can be queried
using nltk.help.upenn_tagset.
I CC – coordinating conjunction

I RB – adverb

I IN – preposition

I NN – noun

I JJ – adjective

I VB – verb

I PRP – pronoun

Step 5: Lemmatize

Put the lemma of each noun from the text into a list.

1 >>> from n l t k . stem . wordnet import WordNetLemmatizer
2 >>> from n l t k . corpus import wordnet
3 >>> lemmata = ...
4 >>> pr in t lemmata
5 [" Augusta " , "Ada" , ... , " notes " , ...]

Step 6: Find Hypernyms

These are the three hypernyms of interest (as there are multiple
sysnsets for a lemma, we pick the first one in each list returned by
nltk.wordnet):

1 >>> r e l a t i v e = wordnet . sysnsets (" r e l a t i v e " , pos=" n ") [0]
2 >>> r e l a t i v e = wordnet . sysnsets (" scienece " , pos=" n ") [0]
3 >>> r e l a t i v e = wordnet . sysnsets (" i l l n e s s " , pos=" n ") [0]

References

I
http://www.nltk.org/book/

I https://github.com/nltk/nltk

I Christopher D. Manning, Hinrich Schütze 2000. Foundations of
Statistical Natural Language Processing. The MIT Press
Cambridge, Massachusetts London, England.
http://ics.upjs.sk/~pero/web/documents/
pillar/Manning_Schuetze_StatisticalNLP.pdf

http://www.nltk.org/book/
https://github.com/nltk/nltk
http://ics.upjs.sk/~pero/web/documents/pillar/Manning_Schuetze_StatisticalNLP.pdf
http://ics.upjs.sk/~pero/web/documents/pillar/Manning_Schuetze_StatisticalNLP.pdf

	WordNet
	Lesk Algorithm
	Finding Hyponyms with WordNet
	Relation Extraction with spaCy
	Lesk Algorithm
	Normalization

